TAIWAN **IICONDUCTOR** COMPLIANCE TO-220 **ITO-220** Pin Definition: 1. Gate 2. Drain 3. Source

TO-252 (DPAK)

Features

- Low R_{DS(ON)} 1.2Ω (Typ.)
- Low gate charge typical @ 12.4nC (Typ.)
- Low Crss typical @ 18pF (Typ.)

Ordering Information

Part No.	Package	Packing			
TSM5NB50CH C5G	TO-251	75pcs / Tube			
TSM5NB50CP ROG	TO-252	2.5Kpcs / 13" Reel			
TSM5NB50CZ C0	TO-220	50pcs / Tube			
TSM5NB50CI C0	ITO-220	50pcs / Tube			
Note: "G" denotes for Hologon Free					

Note: "G" denotes for Halogen Free

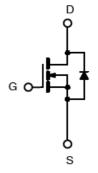
Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Limit Parameter Unit Symbol IPAK/DPAK ITO-220 **TO-220 Drain-Source Voltage** V_{DS} 500 V V Gate-Source Voltage V_{GS} ±30 $Tc = 25^{\circ}C$ 4.4 А **Continuous Drain Current** I_D $Tc = 100^{\circ}C$ 2.4 А Pulsed Drain Current * 17.6 А I_{DM} Single Pulse Avalanche Energy (Note 2) 100 E_{AS} mJ Total Power Dissipation @ $T_c = 25^{\circ}C$ 54 33 70 W $\mathsf{P}_{\mathsf{TOT}}$ 150 °C **Operating Junction Temperature** $T_{\rm J}$ °C Storage Temperature Range T_{STG} -55 to +150

Note: Limited by maximum junction temperature

Thermal Performance

Devenetor	Symbol		Unit		
Parameter		IPAK/DPAK	ITO-220	TO-220	Unit
Thermal Resistance - Junction to Case	Rθ _{JC}	2.3	3.8	1.78	°C/W
Thermal Resistance - Junction to Ambient	RƏ _{JA}	83	62.5	62.5	°C/W


PRODUCT SUMMARY

V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)
500	1.5 @ V _{GS} =10\	/ 4.4

General Description

The TSM5NB50 N-Channel Power MOSFET is produced by new advance planar process. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

Block Diagram

N-Channel MOSFET

TSM5NB50

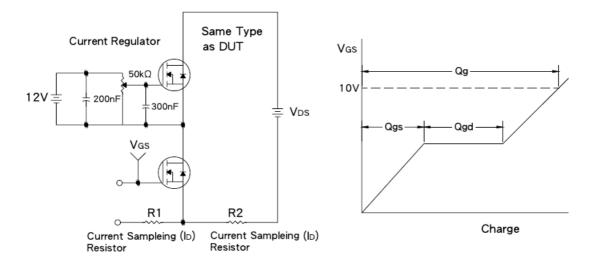
500V N-Channel Power MOSFET

Electrical Specifications (Ta = 25°C unless otherwise noted)

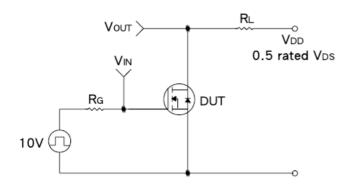
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250uA$	BV _{DSS}	500			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 2.2A$	R _{DS(ON)}		1.2	1.5	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 uA$	V _{GS(TH)}	2.5	3.5	4.5	V
Zero Gate Voltage Drain Current	$V_{DS} = 500V, V_{GS} = 0V$	I _{DSS}			1	uA
Gate Body Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	nA
Forward Transfer Conductance	$V_{DS} = 10V, I_{D} = 2.2A$	g _{fs}		3.5		S
Dynamic						
Total Gate Charge	$V_{DS} = 300V, I_D = 4.4A,$ $V_{GS} = 10V$	Qg		12.4		nC
Gate-Source Charge		Q_gs		2.9		
Gate-Drain Charge	(Note 4,5)	Q_gd		5.5		
Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz	C _{iss}		552		pF
Output Capacitance		C _{oss}		83		
Reverse Transfer Capacitance		C _{rss}		18		
Switching						
Turn-On Delay Time		t _{d(on)}		12		nS
Turn-On Rise Time	$V_{GS} = 10V, I_D = 4.4A,$	t _r		22		
Turn-Off Delay Time	V _{DD} = 300V, R _G =25Ω (Note 4,5)	t _{d(off)}		33		
Turn-Off Fall Time		t _f		21		
Source-Drain Diode Ratings and C	naracteristic					
Source Current	Integral reverse diode in	I _S			4.4	А
Source Current (Pulse)	the MOSFET	I _{SM}			16	А
Diode Forward Voltage	$I_{S} = 4.4A, V_{GS} = 0V$	V_{SD}		0.9	1.5	V

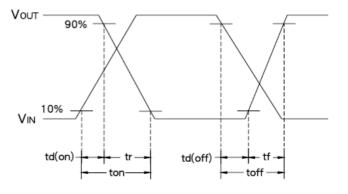
Note 1: Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

Note 2: $V_{DD} = 50V$, $I_{AS}=2.2A$, L=40mH, $R_G = 25\Omega$, Starting $T_J=25^{\circ}C$

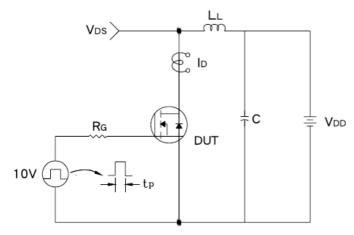

Note 3: I_{SD}≤4A, di/dt≤200A/uS, V_{DD}≤BV_{DSS}, Starting T_J=25°C

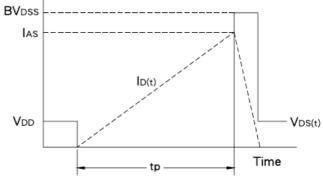
Note 4: Pulse test: pulse width ≤300uS, duty cycle ≤2%

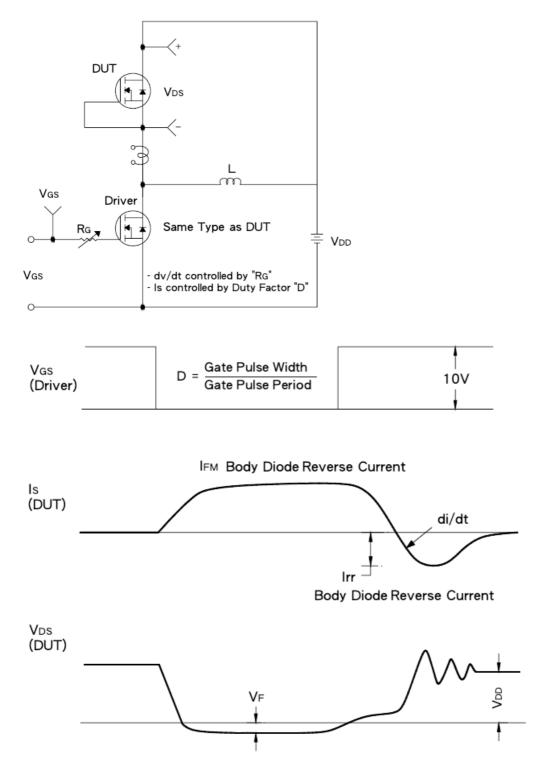

Note 5: Essentially Independent of Operating Temperature

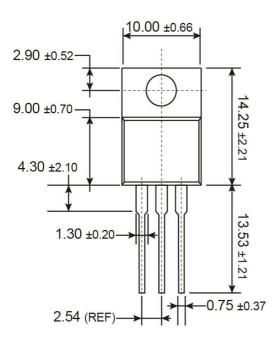


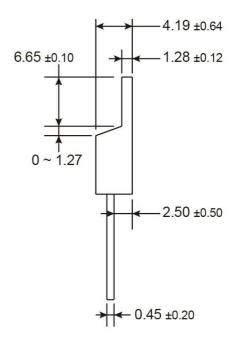
Gate Charge Test Circuit & Waveform

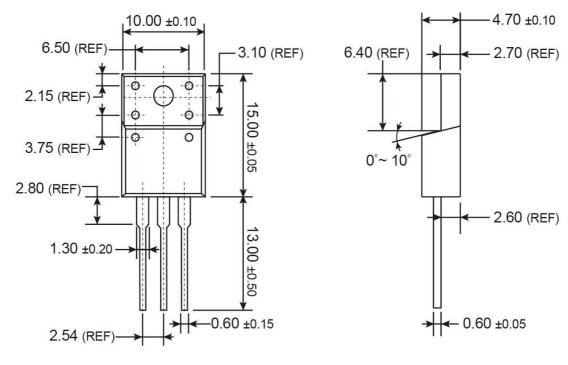



Resistive Switching Test Circuit & Waveform

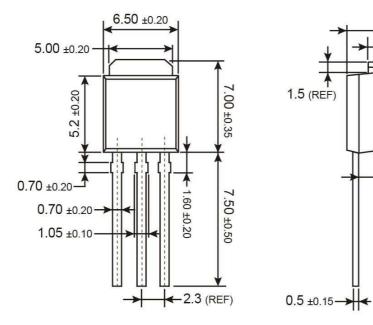

EAS Test Circuit & Waveform




Diode Reverse Recovery Time Test Circuit & Waveform

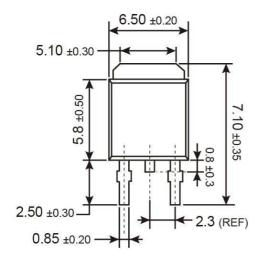

TO-220 Mechanical Drawing

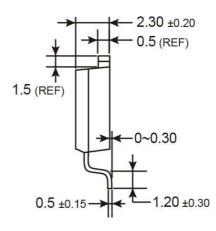
ITO-220 Mechanical Drawing



2.30 ±0.20

0.5 (REF)


-1.00 ±0.15


TO-251 Mechanical Drawing

TO-252 Mechanical Drawing

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.